ON THE GROUP OF AUTOMORPHISMS OF AFFINE ALGEBRAIC GROUPS

BY

DONG HOON LEE

ABSTRACT. We study the conservativeness property of affine algebraic groups over an algebraically closed field of characteristic 0 and of their group of automorphisms. We obtain a certain decomposition of affine algebraic groups, and this, together with the result of Hochschild and Mostow, becomes a major tool in our study of the conservativeness property of the group of automorphisms.

1. Introduction. Let G be an affine algebraic group over a field F, with Hopf algebra $\mathcal{C}(G)$ of polynomial functions on G, in the sense of [2] and let W(G) denote the group of all affine algebraic group automorphisms of G. Then $\mathcal{C}(G)$ may be viewed as a right W(G)-module, with W(G) acting by composition $f \to f \circ \alpha$ on $\mathcal{C}(G)$.

We recall, from [3], that G is said to be *conservative* if $\mathcal{C}(G)$ is locally finite as a W(G)-module. As is shown in [3], the conservativeness of G characterizes the existence of a suitable affine algebraic group structure on W(G) and the obstruction to the conservativeness of a connected G is realized as the presence of certain central tori in G, when the base field F is algebraically closed and of characteristic G.

In the present study of W(G), we exploit the above results and technique of [3] and, accordingly, we refer to [2] and [3] for standard facts concerning affine algebraic groups and their automorphism group.

The following are brief descriptions of the contents appearing in each section: In §2, we examine reductive affine algebraic groups and their conservativeness and, in §3, we establish a certain W(G)-invariant decomposition of G when G is conservative. Finally, in §4, we use the result obtained in §3 to study the structure of W(G).

The following notation is standard throughout: Let G be an affine algebraic group. Then G_1 denotes the connected component of the identity element of G and Z(G) the center of G. If $x \in G$, we use I_x to denote the inner automorphism of G that is induced by x, and, for a subset S of G,

Received by the editors July 9, 1976.

AMS (MOS) subject classifications (1970). Primary 20G15.

Key words and phrases. Affine algebraic groups, conservative, Hopf algebra, antipodes, comultiplication.

 $\operatorname{Int}_G(S)$ denotes $\{I_x \colon x \in S\}$. In the case where S = G, we simply write $\operatorname{Int}(G)$ instead of $\operatorname{Int}_G(G)$.

2. Reductive groups and conservativeness. For an affine algebraic group G over a field F, let $\mathcal{L}(G)$ denote the Lie algebra of G, and for a morphism ρ : $G \to H$ of affine algebraic groups, $\mathcal{L}(\rho)$ denotes the Lie algebra homomorphism induced by ρ . Thus $\mathcal{L}(G)$ consists of all F-linear maps X: $\mathcal{L}(G) \to F$ such that X(fg) = X(f)g(1) + f(1)X(g) for all $f, g \in \mathcal{L}(G)$, and the map $\mathcal{L}(\rho)$: $\mathcal{L}(G) \to \mathcal{L}(H)$ is given by $\mathcal{L}(\rho)(X)(f) = X(f \circ \rho)$, $f \in \mathcal{L}(G)$ and $X \in \mathcal{L}(G)$. For $x \in G$ and $f \in \mathcal{L}(G)$, we write $x \cdot f$ for the left translate of f by g, which is given by $g(g) \to f(g) \to f(g) \to f(g) \to f(g)$.

With this preparation, we prove the following characterization of conservative reductive affine algebraic groups.

THEOREM 2.1. Let G be a reductive affine algebraic group over an algebraically closed field F of characteristic 0. Then G is conservative if and only if Int(G) is of finite index in W(G).

PROOF. Suppose Int(G) is of finite index in W(G). Then the Hopf algebra $\mathcal{C}(G)$ is locally finite as an Int(G)-module. Since Int(G) is a normal subgroup of W(G), it is then locally finite as a W(G)-module, proving that G is conservative.

Suppose, conversely, that G is conservative. Thus, by Theorem 2.1, [4], W(G) is an affine algebraic group and its F-algebra $\mathcal{C}(W(G))$ of polynomial functions on W(G) is generated by the functions x/f, $x \in G$ and $f \in \mathcal{C}(G)$, and their antipodes.

We first show that the F-space $\mathcal{L}(W(G))$ may be identified with an F-subspace of the space $Z^1(G, \mathcal{L}(G))$ of all nonhomogeneous rational 1-cocycles of G with coefficients in $\mathcal{L}(G)$ relative to the adjoint action of G on $\mathcal{L}(G)$. To do this, we let $\sigma \in \mathcal{L}(W(G))$ and, for each $x \in G$, we define

$$\sigma_x \colon \mathcal{C}(G) \to F$$

by

$$\sigma_{x}(f) = \sigma(x/x^{-1} \cdot f), \quad f \in \mathfrak{A}(G).$$

Then we see easily that $\sigma_X \in \mathcal{L}(G)$ for all $x \in G$, and we also have

(1)
$$\sigma_{xy} = \sigma_x + \mathrm{Ad}(x)(\sigma_y), \quad x, y \in G.$$

To see this, let $\gamma \colon \mathscr{Q}(G) \to \mathscr{Q}(G) \otimes \mathscr{Q}(G)$ be the comultiplication of the Hopf algebra $\mathscr{Q}(G)$. For each $f \in \mathscr{Q}(G)$, we write

(2)
$$\gamma(f) = \sum_{i=1}^{n} f_i \otimes g_i, \quad f_i, g_i \in \mathcal{C}(G).$$

Then we have

(3)
$$f(xy) = \sum_{i=1}^{n} f_i(x) g_i(y) \text{ for } x, y \in G.$$

Now let $\alpha \in W(G)$. Then

$$(xy/(xy)^{-1} \cdot f)(\alpha) = f(\alpha(x)\alpha(y)y^{-1}x^{-1})$$

$$= f(\alpha(x)x^{-1} \cdot I_x(\alpha(y)y^{-1}))$$

$$= \sum_{i=1}^n f_i(\alpha(x)x^{-1})g_i(I_x(\alpha(y)y^{-1}))$$
 (by (3))
$$= \sum_{i=1}^n (x/x^{-1} \cdot f_i)(\alpha)(y/y^{-1} \cdot (g_i \circ I_x))(\alpha).$$

That is, we have

(4)
$$xy/(xy)^{-1} \cdot f = \sum_{i=1}^{n} (x/x^{-1} \cdot f_i) \cdot (y/y^{-1}(g_i \circ I_x)).$$

Now

$$\sigma_{xy}(f) = \sigma(xy/(xy)^{-1} \cdot f) = \sigma\left(\sum_{i=1}^{n} (x/x^{-1} \cdot f) \cdot (y/y^{-1}(g_i \circ I_x))\right)$$
$$= \sum_{i=1}^{n} \sigma(x/x^{-1} \cdot f_i) g_i(1) + \sum_{i=1}^{n} f_i(1) \sigma(y/y^{-1} \cdot (g_i \circ I_x)).$$

However, we have (using (3))

$$x/x^{-1} \cdot f = \sum_{i=1}^{n} (x/x^{-1} \cdot f_i) g_i(1), \text{ and}$$
$$y/y^{-1} \cdot (f \circ I_x) = \sum_{i=1}^{n} (y/y^{-1} \cdot (g_i \circ I_x)) f_i(1)$$

Hence

$$\sigma_{xy}(f) = \sigma(x/x^{-1} \cdot f) + \sigma(y/y^{-1} \cdot (f \circ I_x)) = \sigma_x(f) + \sigma_y(f \circ I_x)$$

= $(\sigma_x + \operatorname{Ad}(x)(\sigma_y))(f)$,

proving (1).

For each $\sigma \in \mathcal{L}(W(G))$, define $\sigma' \colon G \to \mathcal{L}(G)$ by $\sigma'(x) = \sigma_x$, $x \in G$. Then we easily see that $\sigma' \in Z^1(G, \mathcal{L}(G))$. Since the functions x/f, together with their antipodes, generate $\mathcal{L}(W(G))$ as an F-algebra, it follows that the F-linear map $\sigma \to \sigma'$ is injective, under which we identify $\mathcal{L}(W(G))$ with an F-subspace of $Z^1(G, \mathcal{L}(G))$.

We next consider the morphism of affine algebraic groups $\nu: G \to W(G)$, which is given by $\nu(x) = I_x$, $x \in G$.

We compute the image of $\mathcal{L}(G)$ under the F-linear map $\mathcal{L}(\nu)$: $\mathcal{L}(G) \rightarrow$

 $\mathcal{L}(W(G))$, $\mathcal{L}(W(G))$ being identified with an F-subspace of $Z^1(G, \mathcal{L}(G))$.

To do this, we first note that X(f') = -X(f) for all $f \in \mathcal{C}(G)$ and $X \in \mathcal{C}(G)$. This may be seen as follows: Write $\gamma(f) = \sum_{i=1}^{n} f_i \otimes g_i$ as in (2). Then, by (3),

$$f(1) = f(xx^{-1}) = \sum_{i=1}^{n} f_i(x) g'_i(x) = \left(\sum_{i=1}^{n} f_i g'_i\right)(x),$$

which implies that $\sum_{i=1}^{n} f_i g_i'$ is constant.

Hence

$$0 = X \left(\sum_{i=1}^{n} f_{i} g_{i}' \right) = \sum_{i=1}^{n} X(f_{i}) g_{i}'(1) + \sum_{i=1}^{n} f_{i}(1) X(g_{i}')$$
$$= X \left(\sum_{i=1}^{n} f_{i} g_{i}(1) \right) + X \left(\sum f_{i}'(1) g_{i}' \right)$$
$$= X(f) + X(f')$$

and X(f') = -X(f) follows.

For $X \in \mathcal{L}(G)$, $x \in G$, and $f \in \mathcal{L}(G)$, we have

$$\mathcal{L}(\nu)(X)(x)(f) = \mathcal{L}(\nu)(X)(x/x^{-1} \cdot f) = X((x/x^{-1} f) \cdot \nu).$$

But $(x/x^{-1} \cdot f) \cdot \nu = \sum_{i=1}^{n} f_i \cdot (g_i \cdot \nu(x))'$.

Hence

$$\mathcal{L}(\nu)(X)(x)(f) = X \left(\sum_{i=1}^{n} f_i \cdot (g_i \cdot \nu(x))' \right) \\
= \sum_{i=1}^{n} X(f_i)(g_i \cdot \nu(x))'(1) + \sum_{i=1}^{n} f_i(1)X(g_i \cdot \nu(x)') \\
= X \left(\sum_{i=1}^{n} f_i g_i(1) \right) - X \left(\sum_{i=1}^{n} f_i(1)(g_i \cdot \nu(x)) \right) \\
= X(f) - X(f \cdot \nu(x)) = (X - \text{Ad}(x)(X))(f).$$

That is, $\mathcal{L}(\nu)(X)(x) = X - \mathrm{Ad}(x)(X)$, and we see that $\mathrm{Im}(\mathcal{L}(\nu))$ is equal to the subsapce $B^1(G, \mathcal{L}(G))$ of $Z^1(G, \mathcal{L}(G))$ consisting of all 1-coboundaries of G.

Since G is reductive, $H^1(G, \mathcal{L}(G)) = 0$. Hence $\operatorname{Im}(\mathcal{L}(\nu)) = B^1(G, \mathcal{L}(G)) = Z^1(G, \mathcal{L}(G))$. Since F is algebraically closed, the surjectivity of $\mathcal{L}(\nu)$ implies that $\operatorname{Im}(\nu) = \operatorname{Int}(G)$ is open in W(G) and hence $\operatorname{Int}(G)$ is of finite index in W(G).

THEOREM 3.2. Let G be an affine algebraic group over an algebraically closed

field F of characteristic 0. Then G is conservative if a maximal reductive subgroup of G is conservative.

PROOF. Let G_u denote the unipotent radical of G, and let P be a maximal reductive subgroup of G. Since F is of characteristic 0, a theorem of Mostow (see [2, Theorem 14.2]) assures that we have a semidirect product decomposition $G = G_u \cdot P$. By the conjugacy of maximal reductive subgroups, we may assume that P is conservative, and we have $W(G) = \text{Int}(G) \cdot \mathcal{A}$, where \mathcal{A} is the subgroup of W(G) consisting of all $\alpha \in W(G)$ leaving P invariant.

Let \mathcal{A}_P denote the restriction image of \mathcal{A} in W(P). Then $Int(P) < \mathcal{A}_P$, and, since P is conservative, W(P)/Int(P) is finite by Theorem 2.1. It follows that $\mathcal{A}_P/Int(P)$ is also finite.

From this point on, we can copy the argument used in [3, p. 539] for the proof of conservativeness of G when P is a connected semi-simple algebraic subgroup and conclude that G is conservative. This establishes Theorem 2.2.

3. W(G)-invariant decomposition of G. For a subset \mathscr{A} of W(G), let $G^{\mathscr{A}}$ denote the set consisting of all $x \in G$ such that $\alpha(x) = x$ for all $\alpha \in \mathscr{A}$.

We prove the following result which will then be used in §4 for out study of W(G).

THEOREM 3.1. Let G be a connected conservative affine algebraic group over an algebraically closed field F of characteristic 0, and let T be the maximal central torus of $W(G)_1$. Then there exists a W(G)-invariant algebraic vector subgroup Z of G such that $G = Z \times G^T$.

PROOF. If T is trivial, then the assertion holds trivially. Thus we assume that T is of dimension ≥ 1 .

For each $x \in G$, the inner automorphism I_x induced by x commutes with every element of T. Hence, for $\alpha \in T$ and $x \in G$, we have $x^{-1}\alpha(x) \in Z(G)$. We define, for each $\alpha \in T$, $\eta_{\alpha} : G \to Z(G)$ by $\eta_{\alpha}(x) = x^{-1}\alpha(x), x \in G$.

Then η_{α} is a morphism of affine algebraic groups. Since G is connected, it follows that $\eta_{\alpha}(x) \in Z(G)_1$ for all $x \in G$. Now we choose a maximal reductive subgroup P of G so that $G = G_u \cdot P$ (semidirect). We first show that every element of P is T-fixed. To do this, we choose a maximal torus D of P. Then $P = D \cdot P'$, where P' denotes the commutator subgroup of P, and $P' < \text{Ker } \eta_{\alpha}$ implies that every element of P' is T-fixed. Hence it is enough to show that every element of D is T-fixed. Let K be the maximal torus of Z(G). Then the torus $\eta_{\alpha}(D)$ is contained in K, and hence we see that every element α of T leaves D invariant. Consider the polynomial map

$$\phi: T \times D \to D$$

given by $\phi(\alpha, x) = \alpha(x)$, and define, for each $x \in D$, $\phi_x : T \to D$ by $\phi_x(\alpha) = \alpha(x)$. Then clearly ϕ_x is a polynomial map. Let $x \in D$ be of order $m < \infty$.

Then $\phi_x(\alpha)$ is also of order m for all $\alpha \in T$. Since D contains only a finite number of elements of order m, it follows from the connectedness of T that Im $\phi_x = \{x\}$. That is, $\alpha(x) = x$ for all $\alpha \in T$. Since the elements in D of finite order form a dense subset of D, it follows that T leaves every element of D fixed.

Next we show that if U denotes the unipotent radical of Z(G), then $G = U \cdot G^T$. The morphism $\eta_{\alpha} \colon G \to Z(G)$ for $\alpha \in T$ maps G_u into U. Hence η_{α} induces a morphism $\mu_{\alpha} \colon G_u \to U$ of affine algebraic groups. Let μ_{α}^0 denote $\mathcal{L}(\mu_{\alpha}) \colon \mathcal{L}(G_u) \to \mathcal{L}(U)$. The natural action of T on U determines a T-module structure on the F-space $\mathcal{L}(U)$, and this in turn defines a T-module structure on the F-space $\mathcal{L}(U)$, $\mathcal{L}(U)$.

We then have

(1)
$$\mu_{\beta}^{0} = \mu_{\beta}^{0} + \alpha \cdot \mu_{\beta}^{0}, \quad \alpha, \beta \in T.$$

To prove (1), we note that $\exp_U \cdot \mu_{\alpha}^0 = \mu_{\alpha} \cdot \exp_{G_{\alpha}}$, where \exp_U , $\exp_{G_{\alpha}}$ denote the exponential maps for U, G_{α} , respectively. Hence for $X \in \mathcal{L}(G_{\alpha})$,

$$\exp \mu_{\alpha\beta}^{0}(X) = \mu_{\alpha\beta}(\exp X) = (\exp X)^{-1}\alpha\beta(\exp X)$$

$$= (\exp X)^{-1}\alpha(\exp X)\alpha((\exp X)^{-1}\beta(\exp X))$$

$$= \mu_{\alpha}(\exp X)\alpha(\mu_{\beta}(\exp X)) = \exp \mu_{\alpha}^{0}(X)\alpha(\exp \mu_{\beta}^{0}(X))$$

$$= \exp \mu_{\alpha}^{0}(X)\exp(\mathfrak{L}(\alpha)(\mu_{\beta}^{0}(X))) = \exp(\mu_{\alpha}^{0}(X) + \alpha \cdot \mu_{\beta}^{0}(X)).$$

Hence it follows that $\mu_{\alpha\beta}^0(X) = \mu_{\alpha}^0(X) + \alpha \cdot \mu_{\beta}^0(X)$, proving (1).

The identity (1) defines a rational T-module structure on the F-space $F \oplus \operatorname{Hom}_F(\mathcal{C}(G_u), U)$, if we define the T-action by $\alpha \cdot (r, \phi) = (r, r\mu_\alpha^0 + \alpha \cdot \phi)$ for $\alpha \in T$, $r \in F$ and $\phi \in \operatorname{Hom}_F(\mathcal{C}(G_u), \mathcal{C}(U))$. Since T is reductive, the T-submodule $\operatorname{Hom}_F(\mathcal{C}(G_u), \mathcal{C}(U))$ has a 1-dimensional T-invariant complement in $F \oplus \operatorname{Hom}_F(\mathcal{C}(G_u), \mathcal{C}(U))$. This complement contains exactly one element of the form $(1, \phi)$.

Hence $(1, \phi) = \alpha \cdot (1, \phi) = (1, \mu_{\alpha}^0 + \alpha \cdot \phi)$ for all $\alpha \in T$ and this implies that $\mu_{\alpha}^0 = \phi - \alpha \cdot \phi$, $\alpha \in T$.

For each $X \in \mathcal{L}(G_u)$, we have

$$\exp \phi(X) = \exp(\mu_{\alpha}^{0}(X) + \alpha \cdot \phi(X))$$

$$= \exp(\mu_{\alpha}^{0}(X)) \exp(\mathcal{E}(\alpha)(\phi(X)))$$

$$= (\exp X)^{-1} \alpha (\exp X) \alpha (\exp \phi(X)).$$

Hence $\exp_{G_u} X \cdot \exp_U \phi(X) \in G^T$ for all $X \in \mathcal{C}(G_u)$. Since $\exp_{G_u}(\mathcal{C}(G_u)) = G_u$, it follows that $G_u < U \cdot G^T$, and $p < G^T$ implies $G = U \cdot G^T$.

Now we consider the rational T-module $\mathcal{L}(U)$. Since T is a torus over an algebraically closed field, we may decompose the F-space $\mathcal{L}(U)$ as

$$\mathcal{L}(U) = \sum_{\chi \neq 1} L_{\chi} + \mathcal{L}(U)^{T},$$

where L_{χ} is the weight space $\{X \in \mathcal{L}(U): \alpha \cdot X = \chi(\alpha)X \text{ for all } \alpha \in T\}$ corresponding to the weight $\chi: T \to F^*$, and $\mathcal{L}(U)^T$ is the T-fixed part of $\mathcal{L}(U)$.

Since T is a normal subgroup of W(G), W(G) permutes the weights of T in $\mathcal{L}(U)$. Hence the F-subspace $Z = \sum_{\chi=1} L_{\chi}$ is W(G)-invariant. Let $Z = \exp_U Z$. Then $U = Z \times U^T$ and this implies that $G = Z \times G^T$ follows. Clearly Z is W(G)-invariant and the theorem is proved.

REMARK. Since T is a normal subgroup of W(G), it follows that G^T is also W(G)-invariant. As we will see in §4, T is central in W(G) and, in fact, a direct factor of W(G).

4. Decomposition and conservativeness of W(G).

THEOREM 4.1. Let G be a conservative connected affine algebraic group over an algebraically closed field F of characteristic 0. Then the maximal central torus of $W(G)_1$ is of dimension ≤ 1 and is a direct factor of W(G).

PROOF. Let T be the maximal central torus of $W(G)_1$, and assume that T is nontrivial. Then we have a W(G)-invariant decomposition $G = Z \times G^T$ (Theorem 3.1). Hence we have $W(G) \simeq W(Z) \times W(G^T)$ as affine algebraic groups and the restriction map $T \to W(Z)$ is injective.

Let \mathfrak{z} denote the Lie algebra of Z. Then the affine algebraic group W(Z) may be identified with the affine algebraic group $GL(\mathfrak{z})$ of all F-linear automorphisms of \mathfrak{z} . Since F is algebraically closed, the center of W(Z) is a 1-dimensional torus and is a direct factor of W(Z). Since every element of W(Z) can be extended to an element of W(G), we see easily that the restriction map sends T isomorphically onto the center of W(Z). Hence our assertion follows.

In [2], Hochschild proved that, if G is a nonabelian unipotent affine algebraic group, then the maximal central torus of $W(G)_1$ is trivial and hence that $W(G)_1$ is conservative. The assertion does not hold for arbitrary solvable affine algebraic groups (see the example in [2, p. 111]).

The following theorem characterizes those nonabelian solvable groups G for which $W(G)_1$ is conservative.

THEOREM 4.2. Let G be a connected conservative solvable nonabelian affine algebraic group over an algebraically closed field of characteristic 0. Then the following are equivalent:

- (i) $W(G)_1$ is conservative.
- (ii) The connected component of the center of $W(G)_1$ is unipotent (i.e. T = 1).

(iii) G cannot be a product $G = Z \times H$ of a nontrivial algebraic vector subgroup Z and an algebraic subgroup H, both of which are invariant under W(G).

PROOF. (iii) \rightarrow (ii) follows from Theorem 3.1 and the subsequent remark.

- (ii) \rightarrow (iii) holds because of the decomposition $W(G) = W(Z) \times W(H)$.
- (ii) \rightarrow (i) follows from Theorem 3.2 of [4].

It remains to show (i) \rightarrow (ii).

Let K be a maximal torus of G so that $G = G_u \cdot K$ (semidirect).

If K is trivial, then G is unipotent and nonabelian, and hence (ii) holds (see [2, p. 110]).

- (1) Suppose dim $K \ge 2$. Then the maximal central torus of G is trivial by Theorem 3.2 [4] and this implies that the torus $\operatorname{Int}_G(K) \simeq KZ(G)/Z(G)$ is of dimension ≥ 1 . Since $\operatorname{Int}(G)$ is a normal algebraic subgroup of W(G), it follows that the algebraic torus $\operatorname{Int}_G(K)$ is contained in the radical of $W(G)_1$ and hence is central in a maximal reductive group containing it. Since $W(G)_1$ is conservative, (ii) follows from Theorem 3.2 of [3].
- (2) Suppose dim K = 1. If K is central in G, then $G = G_u \times K$, and hence $W(G) \simeq W(G_u) \times \mathbb{Z}_2$. Since G_u is nonabelian, (ii) follows immediately.

Therefore we may assume that the identity component of the center of G is unipotent. Then $\operatorname{Int}_G(K)$ is a 1-dimensional torus. Assume that (ii) does not hold, and let T be the maximal central torus of $W(G)_1$. Then $T \cap \operatorname{Int}_G(K) = \{1\}$, for if $\alpha \in T$ is of the form $\alpha = I_x$ for some $x \in K$, then the decomposition $G = Z \times G^T$ in Theorem 3.1 implies that $\alpha = 1$.

Since T centralizes $\operatorname{Int}_G(K)$, it follows that $T' = T \cdot \operatorname{Int}_G(K)$ (direct) is an algebraic torus of dimension 2.

Since T' is contained in the radical of $W(G)_1$, it follows that T' is central in a maximal reductive subgroup containing T'. (See [1, Chapter III].) Hence again by Theorem 3.2 of [3], $W(G)_1$ cannot be conservative, contradicting (i). Therefore $T = \{1\}$ and (ii) is proved.

REFERENCES

- 1. A. Borel, Linear algebraic groups, Benjamin, New York, 1969. MR 40 #4273.
- 2. G. Hochschild, Introduction to affine algebraic groups, Holden-Day, San Francisco, 1971. MR 43 #3268.
- 3. G. Hochschild and G. D. Mostow, Automorphisms of affine algebraic groups, J. Algebra 22 (1972), 535-543.

DEPARTMENT OF MATHEMATICS, CASE WESTERN RESERVE UNIVERSITY, CLEVELAND, OHIO 44106